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SUMMARY 

The spurious pressures and ostensibly acceptable velocities which sometimes result from certain FEM 
approximate solutions of the incompressible Navier-Stokes equations are explained in detail. The 
concept of pressure modes, physical and spurious, pure and impure, is introduced and their effects on 
discretized solutions is analysed, in the context of both mixed interpolation and penalty approaches. 
Pressure filtering schemes, which are capable of recovering useful pressures from otherwise polluted 
numerical results, are developed for two particular elements in two-dimensions and one element in 
three-dimensions. The automatic pressure filter associated with the penalty method is also explained. 
Implications regarding the effect of spurious pressure modes on accuracy and ultimate convergence 
with mesh refinement are discussed and a list of unanswered questions presented. Sufficient numerical 
examples are discussed to corroborate the theory presented herein. 
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IV. GENERALIZATION T O  OTHER ELEMENTS 

While theoretical results (see, for example, Crouzeix and Raviart" for the steady Stokes 
equations and Jamet and Raviart" for the steady Navier-Stokes equations) have established 
existence, uniqueness, and even error estimates of the approximate solution using certain 
elements, that from other elements can, as illustrated in the previous section, suffer from 
nonuniqueness and even nonexistence. The latter arises due to the occurrence of spurious 
pressure modes in the pressure approximation space. In order to gain additional insight into 
such problems it is necessary to extend the previous investigation of (pure) pressure modes to 
more complicated mixed and equal-order interpolation elements and this leads to an 
investigation of the uniqueness and existence of the G E M  approximation of the problem in 
its natural function space setting. 

A. Theory 

a" E Wh and p" E Qh such that 
The formulation of the discretized Stokes problem can be cast in the following form: Find 

(36) (p", V . w") = A(uh, wh), 
(V. a", 9") = 0 

for all W" E wh,o, q" E Qh. Here 

(a ,  b ) =  h ab 

and 

A(uh, w") = (Vw")':S(ah), h 

(37) 

(39) 

where sii is defined in (Ic). wh is a finite dimensiond Space Of co vector functions on a; w,, 
is the subspace with vanishing components on those parts of the boundary on which the 
associated velocity components are specified. Finally, Q, is a finite dimensional subspace of 
L2(Q) which itself is the space of all square integrable functions on Q. The usual GFEM 
subspaces Qh are either piecewise continuous (c") polynomials or piecewise discontinuous 
(C') polynomials. The previous considerations on the linear velocity-constant pressure 
element can be recovered and generalized by investigating the uniqueness and existence of 
the GFEM solution. 

First, the uniqueness question can be addressed by assuming that two solutions (11:p:)~ and 
(a&&' exist. If 

v"~(a:-a:) and 6" =(p;--pk), (40) 
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it follows from (36) and (37) that 

A(vh, w") = (ph, V .  w") (41) 

and 

(V. V", 9") = 0 (42) 

for vh E Wh.0, 6" E O h  and all W" E Wh,o, qh E Q,. A permissible specific choice is (w", 4") = 
(v". 6") and then (41) and (42), yield 

A(vh, v") = (B", V . v") (434 

(43b) 

and 

(V . V", 6") = 0. 

Since A(vh, v") is a positive definite quadratic form, it follows that vh =O. (If the imposed 
boundary conditions are (ft, f,) specified everywhere, then A(vh, v") is only semi-definite and 
V" equals a constant vector which implies that the velocity field is nonunique due to rigid 
body modes. This case is disallowed herein.) Therefore, the velocity field of the GFEM 
Stokes problem is unique. Then, setting vh = O  in. (41) and (42), uniqueness of the pressure 
field follows from 

Condition A: 
For all W" E wh.0, 

(V. w", p") = O must imply ph = 0. (44) 
(The matrix analogue of (44) is WTCP= 0 for all vectors W). If solutions to (44) exist with 
ph # 0 (i.e. if Condition A is violated), the GFEM solution is nonunique; this nonuniqueness 
occurs as pressure modes-even though a unique velocity field is obtained. 

It is noteworthy that the latter condition is also a restriction appropriate to the GFEM 
Navier-Stokes problem because it is generated by setting vh = O  and the nonlinear terms 
vanish. The hydrostatic pressure mode obviously violates Condition A and, being acceptable 
physically, can be overlooked by recasting Condition A to read ph = constant. Condition A is 
a special case (weaker version) of a result due to Brezzi2' regarding existence and uniqueness 
for saddle point variational problems (see also RaviartZ4) and one of its consequences is that 
the computation of the eigenvalues of an element matrix as, for example, carried out by 
Olson and Tuann3 is insufficient for the investigation of pressure modes. 

When pressure modes exist, solvability conditions must also be satisfied by the GFEM 
system. These are generated by setting (w", qh)T= (0, p:JT, in (36)-(37), which leads to 

Condition B: 

( V .  u", pki) = 0; i = 1,2,  . . . , n (45) 

where n is the total number of pressure modes p",. If this condition is violated, the 
associated GFEM system is inconsistent and has no solution. This is the generalization of 
(25), which was presented in association with the 4-node element. 

B. Applications 

1. Bilinear velocity-constant pressure element. The utilization of this alternative technique 
can be first illustrated by applying it to the previously considered case of the 4-node element, 
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the essential details of which have already been presented in Section 111 C .  (see also Sani et 
The earlier description of situations in which hydrostatic and/or CB modes exist (the 

vanishing of the right-hand sides of (19) and/or (20), respectively) provides concrete 
examples of nontrivial pressure fields which violate Condition A. Finally, the solvability 
constraints previously generated for this element can be duplicated here by applying 
Condition €3 to these pressure modes (an exercise w e  leave to the reader). 

2. Equal-order interpolation elements. In order to illustrate the application to equal-order 
interpolation elements, the C" bilinear velocity-bilinear pressure (C" or C-') interpolation 
will now be considered. For clarity and simplicity, we will consider meshes composed of 
straight parallel lines. In the discontinuous pressure case, the pressure representation 
employed here and hereafter utilizes Gauss point pressure nodes (located at the element 
centroid for the piecewise constant pressure element and at the 2 x 2  Gauss points for the 
bilinear pressure elements). In order to demonstrate the existence of pressure modes, it is 
only necessary to demonstrate a violation of Condition A. An isoparametric finite element is 
used and the quadrilateral elements in Figure 9 are mapped onto the reference square 
[-1, -1]5(5, q) s[l, 11. A violation of Condition A can be demonstrated by setting 

where P ~ E  Qh is the bilinear portion of the pressure in element i ,  Di is an arbitrary constant 
in element i, and c$(& qj is the appropriate velocity basis function. 

For this case, application of (44) to the four-patch of Figure 9(a) leads to 

= , = I  iQ[C11: 5qJ(al +P,r l )  dE drl +C211 - 1  I' - 1  MY, +act) d5 dv)]=O, (46) 

where a,, @,, y, and 6, are constants associated with the mapping of element i into the 
reference square. Note that the integrals are identically zero for arbitrary constants 
(C, ,  C2, 0,) because all integrands are odd functions in either .$ or q. By restricting the index 
i in (46) to 2 or 1, one generates the form of the integral for a typical boundary two- or 
one-patch, respectively. Therefore, the same conclusion holds in these cases. Consequently, 
Condition A is violated not only in the C' bilinear pressure approximation case, but also in 

/ = /  f7 
(b) (C) 

Figure 9. Sample patches of elements 
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the discontinuous (C I )  bilinear approximation case. (The pressure mode p," = D,[v corres- 
ponds to  a C" approximation if the magnitude of 0, is the same for all elements but its sign 
is different for any two elements sharing a side; otherwise, p!' is a piecewise discontinuous 
(C- ' )  approximation. Similar reasoning can be applied to the functions p," = D,[ or p,"=D,v 
which appear below.) Moreover, here the violation of Condition A and hence the occurrence 
of at least one spurious pressure mode is independent of the prescribed velocity boundary 
conditions because the boundary one-and two-patch results (velocity basis functions which 
would be associated with boundary nodes) are independent of C,  and C,. 

Replacement of ph appearing in the integral in (46) successively by D, =const., D,C, and 
D,q can be used to  further establish that at least the physical hydrostatic pressure mode, a 
spurious plane '[-wave' pressure mode and a spurious plane 'q-wave' pressure mode, 
respectively, are also possible. In the latter two cases, Condition A is not violated automati- 
cally because of an odd integral as in the [v-mode case, but by satisfaction of certain 
constraints by these waves. In these cases, violation of Condition A on a 'four-patch' (Figure 
9(a)) requires that 

(1) for pt' = 4 5 :  D ,  = D4, D, = D,; 

(2) for p; = Diq: D ,  = D,, D, = D4, 

Condition (1) is satisfied by a {-wave on any four-patch in the grid and Condition (2) is 
similarly satisfied by the q-wave. The inclusion of a one-and two-patch test, which reflects 
the specification of normal or tangential forces on the boundary, establishes that the [-wave 
and q-wave pressure modes can be  suppressed if the force normal to the wave form is 
specified on a portion of the boundary. Consequently, in general, multiple degeneracies must 
occur when using this element t o  simulate flows in which the velocity is specified everywhere 
on the boundary. In fact, on sufficiently large meshes, we have numerically encountered 
seven spurious pressure modes in one case and 80 in another. The  C-' bilinear pressure case 
is even more degenerate (and cannot even yield a velocity solution) because of an excess of 
continuity constraints compared to momentum equations; this is analogous to what happens 
if full quadrature is used on the equivalent of the 'B matrix' in the penalty formulation. 

Finally, the situation using equal interpolation with higher-order elements must be  even 
more chaotic and we see n o  reason to  pursue it. 

3 .  Higher-order rnixed interpolation elements 

In the case of the higher-order C" biquadratic velocity and either C" or C-' bilinear 
pressure interpolation, the additional types of basis functions with one-and two-patch 
support which must be added to those depicted in Figure 9 are displayed in Figure 10. 

Construction of the integral in (44) with an appropriate velocity basis function C$ leads to 
the following requirements for a violation of Condition A with pp = Di[q: 

a. 4-Patch (Figure 9(a) )  

hADi + Dz) - hi(& + 0 4 )  = 0, 

Il(D1+ DJ- l,(DZ +D4) = 0. 

A translationally invariant solution requires that Di depend only on geometrical characteris- 
tics of element i and hence the only such family of solutions appears to  be Di = E/Ai where 
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Y 
t C * 1 - 4 - * 2 4  

Figure 10. Sample patches of !&node elements 

E is an arbitrary constant and A, is the area of element i .  Note that the D,'s are all the same 
sign and hence a C-' approximation space Q, is required in order for a pressure mode to 
exist. 

b. 2-Patch (Figure 10(a)) 

1,D,-12D2=0 

A solution here is again of the form 0, = E/A, where E is an arbitrary constant. 

c. 1-Patch (Figure 10(b)) 
The integral is identically zero and Condition A is violated independently of the value of 

D , k  

d. 2-Patch boundary elements (Figure 9(b ) )  
(i) No Specified Velocities 

D I + D, = 0, 

1 ,  D, - 12D2 = 0 .  

Here D, = D, = 0 and Condition A is always satisfied. 
(ii) Normal Velocity Specified: 

D1 =-D2 

Here a C?' pressure approximation space is required. 
(iii) Tangential Velocity Specified 

I1 D ,  - lZD2 = 0 

Here D, = E/A, and a C--' pressure approximation space is required. 

e. 1-Patch boundary elements (Figures 9(c)  and 1O(c)) 

Condition A is always satisfied. 
A perusal of the foregoing results, with the requirement that all of the pertinent (as 

determined by boundary conditions) patch tests must be satisfied in order to demonstrate a 
violation of Condition A, allows one to conclude that in a domain of quadrilateral elements 
with the tangential component of velocity specified everywhere on the boundary, at least one 
spurious pressure mode will exist with a C-' pressure approximation space. 

A more complete analysis of the problem requires a straightforward extension of the 
foregoing analysis to the functions pf'= const., p: = D,C and pf' = Diq. Since any bilinear 
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pressure on an element can be represented as a linear combination of these p-functions, one 
can then make additional statements about the number of spurious pressure modes. The 
result from this analysis which precludes any additional spurious modes is the constraint 
imposed by the 4-patch, e.g. for the (-mode, 

h2(Di + 4) +hi(& +- D4) = O ,  

1 i (D, - Di)  - MD2 - 0 4 )  = 0, 

which possesses no translationally invariant solution, i.e. Di being only a function of the area 
of element i. Analysis of the ?-mode leads to similar results. Thus, such mode forms cannot 
violate Condition A and lead to a spurious pressure mode; on the otherhand, pf =D, = 
constant does violate Condition A if the normal velocity is specified everywhere on the 
domain and corresponds to the physical hydrostatic pressure mode. 

Since the 'patch-tests' generate at most one spurious C-' mode and no Co modes, it 
follows that mixed interpolation with a C0 biquadratic velocity and Co bilinear pressure 
cannot exhibit spurious pressure modes while a C-' bilinear pressure exhibits only the one 
spurious pressure mode previously described (A), which can be suppressed by avoiding the 
specification of the tangential component of velocity everywhere on the boundary of the 
domain. 

A similar analysis of the C" 8-node serendipity velocity element leads to the following 
conclusions: (i) Co bilinear pressure cannot exhibit any spurious pressure modes, (ii) C-l 
bilinear pressure can exhibit at least three spurious modes, the &,-mode, the (, mode and the 
v-mode. 

C .  Filtering the spurious pressure mode in a higher-order element 

In Galerkin-finite element simulations of the incompressible Navier-Stokes equations 
using biquadratic approximation for velocity, there are two ways to proceed in order to 
finally obtain useful pressure fields. One can select an element which exhibits no spurious 
pressure modes or one can develop a filter to extract a useful approximation to the physical 
pressure field from the polluted numerical results of an element which exhibits a spurious CB 
pressure mode-pure and impure-in complete analogy with the 4-node element. While the 
former may appear more desirable from the point of view of pressure modes, there are also 
good reasons for choosing the latter (see Gresho et aL2* for a critique of the Co pressure 
element). Equal-order interpolation, as in our second example, with its multiple de- 
generacies, probably does not even warrant consideration, but our third example of Co 
biquadratic velocity-discontinuous bilinear pressure with its single spurious mode, appears to 
be a viable (and generally very good) element and will be used here as a vehicle for 
describing another filtering scheme. 

Once the form of the (single!) pressure mode is known, a filter can generally be devised by 
realizing that the numerical pressure field will contain a spurious component which is 
proportional to this pressure mode. A useful pressure field can sometimes be obtained by 
requiring that it have no component in the closed subset Z, E Qh spanned by the pressure 
modes. The method we developed €or the 9-node element generates such a filtered pressure 
by annihilating the spurious CB mode elementwise, based on the knowledge that peC= 
(1, -1,1, -l)'/& for a rectangular element of area A,, where the four Gauss points are 
labelled sequentially in a clockwise (or counter clockwise) manner (note the resemblence to 
the CB mode on a 4-patch of 4-node elements). This is accomplished by requiring the four 
filtered Gauss point pressures on each (rectangular-the only type considered theoretically) 
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element to satisfy PI - P2 + P3 - P4 = 0, which constrains the filtered pressure variation on an 
element to possess no component proportional to the elementwise variation of the A- 
pressure mode (the filtered pressure is linear rather than bilinear). The resulting filtered 
pressures (Pi) are given by 

Pf=83Pi +P~,+1, -P~i+21+P~i+s] ) ,  i =  1729 3,4 ,  (47) 

where [ ] indicates an index modulo 4. These filtered pressures apply at the same four Gauss 
points as the original pressures cnd are still describable by the same C-’ basis functions 
(which of course now effectively degenerate to the form Jli = a + b t  + cq); hence in this case 
the pressures are filtered but not smoothed. This filter provided useful pressure fields in all 
the numerical examples considered during our investigation (for both pure and impure 
modes). It is noteworthy (at least for pure CB grids) that these filtered pressures are 
‘physical’ in the sense that they are the pressures ‘seen’ by the momentum equations (the 
[q-portion of the pressure is annihilated by the C matrix). 

Similar ideas can presumably be useful in dealing with other elements generating spurious 
pressure (at least in those cases which exhibit a single, describable, spurious mode); however, 
it is noteworthy that the Co bilinear velocity-piecewise constant pressure element is a case in 
which an elementwise filtering procedure is apparently not appropriate (i.e. ‘smoothing to 
the nodes’ is also required). 

D. Further discussion of the biquadratic element 

To conclude this section, we point out some additional properties and consequences of the 
CB mode for the biquadratic, 2 x 2 Gauss point bilinear pressure element; as stated earlier, 
our analysis of this element has been limited to grids composed of rectangles (of arbitrary 
sizes). The global CB constraint equation is formed in the usual way (P:C‘U = 0), leading to 
(see equation (14)) 

where Cf represents the kth continuity equation on the ith element (that obtained from the 
kth Gauss-point Galerkin equation, Cf = 0, k = 1, . . . ,4), Ai is the area of that element, and 
there are M elements in the grid. As we observed from our analysis and discussion of the 
4-node element, this spurious constraint equation contains several implications: (i) it is 
always satisfied by any (consistent) numerical solution; (ii) it leads to a CB mode when the 
imposed boundary conditions duplicate it (e.g. contained flows always exhibit a CB mode- 
either pure or impure); (iii) it imposes a constraint on the tangential velocities if any f, 
boundary conditions are employed, and finally; (iv) it can lead to an ill-posed algebraic 
system if the applied boundary conditions violate it. An example of such violation can again 
best be demonstrated via the example of the lid-driven cavity with contained flow; if u = uo 
for nodes 3, . . . , 2N-  1, where there are N elements across the lid (and u1 = u ~ ~ + ~  = 0 for 
contained flow), the constraint equation gives (for an odd or even grid) 

(uO-2uz)/l, = ( ~ 0 - 2 ~ ~ N ) ~ N  =o, 
where 11, IN are the lengths of the first and last elements, respectively. Hence, as with the 
bilinear element, the velocities to be imposed at nodes 2 and 2N must be selected carefully; 
e.g. if 1, = lN, u2 = uZN = u 0 / 2  will again suffice. 
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Also noteworthy is that Ct,l Cf=O, i = 1 , .  . . , M, which is implicit in the discretized 
system, generates element-level mass balances. 

Ostensibly the 3-D version of this element (triquadratic velocity on a 27-node brick with 
trilinear pressure at the 2 x 2 x 2 Gauss points) would, like its simpler counterpart (8-node 
brick), exhibit multiple (and perhaps unfilterable) CB modes. 

Finally, we should point out that there are some a priori ‘cures’ for the CB problems with 
the 9-node element: (i) if the C-’ pressure is approximated linearly (a + be + c q )  rather than 
bilinearly, there is no spurious pressure mode (results thus far from this element are 
encouraging;” however, the same linear pressure approximation in conjunction with the 
8-node serendipity element can generate two spurious pressure modes); (ii) an equivalent, 
and more cost-effective procedure would employ the penalty method (again using the same, 
‘3-node’ linear pressure approximation) or the newly-developed ‘approximately divergence- 
free element’ by Gri!Eths.z6 In 3-D, we conjecture that again only a C-’ linear pressure 
approximation, p = a + b( + cq + dl ,  would preclude CB modes; in this case, the 
price may be higher in that there are then relatively few continuity constraintsz5 (by a factor 
of 2) compared with the trilinear (C-’)  pressure approximation, although results thus far are 
again encouraging.” 

V. REMARKS ON EARLIER THEORY AND THE PENALTY APPROACH 

A. Admonitions regarding theoretical results 

Numerous theoretical investigations of the conventional Galerkin Finite Element Method 
(GFEM) as well as its penalty analogue (PGFEM) applied to the primitive variable form of 
the Navier-Stokes equations and their Stokes limit have appeared in the literature. For 
example, Crouzeix and Raviart” and Jamet and Raviart” considered the GFEM and 
B e r c o ~ i e r ’ ~ * ~ ~ ~ ~ *  considered additionally the PGFEM; a review of these topics is contained in 
Girault and Raviart?’ 

Focusing first on the GFEM formulation, these analyses provide hypotheses under which 
the scheme converges to a unique solution as well as error estimates. Crouzeix and Raviart” 
and Jamet and Raviart” consider a finite element mesh composed of nondegenerate 
triangles and provide both general results and results for specific elements; Berc0vie8~ 
extended these results to the PGFEM (see also Reddy3’). Most of these results, including 
existence and uniqueness, are ostensibly applicable to the Lagrange family of quadrilateral 
elements. However, our analyses indicate that the existence of pressure modes, i.e. nonuni- 
queness in the approximate pressure field on certain meshes, precludes a direct application of 
their results. Moreover, as demonstrated during the analysis of the 4-node element and the 
Co biquadratic velocity-C-’ bilinear pressure element, the solvability constraints imposed on 
the discrete problem by the spurious pressure modes can force the allowable boundary 
conditions to be mesh dependent. The latter raises fundamental questions relating to the 
convergence of these methods. The answer to these questions appears to lie in the basic 
hypothesis which is violated by the presence of spurious pressure modes in the pressure 
approximation space. 

In all the analyses it appears that one of the basic hypotheses violated by the existence of 
pressure modes is either (a) for every $“ E Qh whose integral over R is zero, there is a 
vh E W,,o such that 

V,.vh=(Irh (49) 
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or alternatively (b) there exists a k > O  such that 

for all $h E Q,. (The discretized operator Vh is defined as in Crouzeix and Raviart,' by 
requiring (vh.vh, Jih)=(V.vh,  qbh) for all ah (see also Appendix I). Thus, here it 
represents the Qh projection of the operator .] operating in Whs0. Also, the norms I I I l ah  
and l\\lwh,o are defined as in Berc0vier.2~ If spurious pressure modes exist in the pressure 
approximation space Qh (any physical hydrostatic mode can easily be suppressed by 
requiring the pressure to integrate to zero over O), then neither of the two hypotheses is 
satisfied since by definition of a pressure mode, p,", 

for all vh E Wha0. (See also Carey3'.) But, using (49) for example, leads to In (p,h)' = 0, which 
would require p,"=O. This dilemma can be resolved by realizing that the approximate 
pressure field generated by the GFEM in Q,, while not unique, can still in some cases 
represent an approximation to the continuum pressure field if the approximate pressure field 
is constrained to possess zero component in Z,,, i.e. the null space of the discretized gradient 
operator, C, which is spanned by the pressure modes. (See Fortin," BrezziZ3 and Ber- 
~ovier*~.) That is, the approximate pressure must be appropriately filtered as described, for 
example, in the preceding sections. In this case, one might expect the GFEM to converge to 
the unique (possibly up to an additive constant) continuum pressure field as the mesh is 
refined since this pressure can be shown to be in L,, the space spanned by in the ultimate 
mesh refinement. BreuiZ3 presents necessary and sufficient conditions to ensure existence of 
an approximate solution; Fortin" gives some practical procedures to ensure satisfaction of 
(50). Song et aL3' have additionally addressed the case in which the LBB constant (k ,  in (50)) 
is mesh-dependent. 

In the presence ,of pressure modes one must proceed very carefully, both when interpret- 
ing the numerical results with their spurious pressures, and in presenting theoretical results. For 
example, Theorem 2 as presented in Bercovier and Engelman16 appears to be invalid for the 
C-l bilinear pressure element on a regular mesh because of the existence of a spurious 
pressure mode. Their numerical simulations do not clearly reflect the presence of this 
pressure mode, apparently because the penalty approach has a 'built-in' pressure mode filter 
which is discussed in the next section. A conventional GFEM solution employing the 
ostensibly identical pressure approximation space would lead to a very acceptable velocity 
field but (depending, as usual, on boundary conditions) a frequency completely spurious 
pressure field which, before filtering, would violate their comparison theorems. 

The illustration of the inconsistent discretized system generated during the discussion of 
the 4-node element shows that additional complications can arise when pressure modes are 
present. As pointed out by Fortin:' one must question the very convergence of the GFEM 
(and also the PGFEM) in such cases. 

B. Pressure modes a la penalty 

In this section we attempt to correlate theory and experience when the penalty method is 
employed using the two elements previously considered via mixed interpolation (the 4-node 
element and the 9-node, C-' bilinear pressure element). We will also elucidate the 
'automatic built-in CB minimizer' associated with the penalty method. We first note that 
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there is no pure CB (formally) via the penalty approach (it is another impure mode); the 
penalty eigenvalue corresponding to what would be a pure CB is perturbed from zero like 
O(l/A). 

1. Analytical 

Beginning with the penalty ‘equation of state,’ ph = -AV . uh, we form 

where pm is a pressure mode. If a (pure) pressure mode (or modes) would exist using mixed 
interpolation (MI), then the right-hand side of (52) must vanish by virtue of Condition B (45); 
hence 

Jnpmph=0;  rn=1,2 ,..., n, (53) 

is satisfied by the approximate pressure field from a penalty calculation for each pressure 
mode which would exist using MI (i.e. the penalty pressure has no projection onto the 
subspace spanned by pressure modes). For example, if a hydrostatic pressure mode would 
exist using MI, then the penalty method sets the ‘arbitrary’ constant via I, p h  = 0 (this can 
also be derived via a global mass balance argument). 

Penalty results are often somewhat polluted by oscillatory pressures which ‘look like’ CB’s 
(while absent globally, via (53), a ‘CB-like’ mode is still present locally). Hence, assuming 
we can express the numerical result as the sum of a ‘physical’ pressure (p,) and a CB 
pressure, pc,  

p h  = ( p h  -4 + ap, =pp+ ap, (54) 

Equations (53) and (54) can be used (in principle) to obtain the pressure mode amplitude, a, 
in terms of the (unfortunately generally unknown) physical pressure, as 

Shortly we will use these results to explain the automatic CB minimizer associated with the 
penalty method, but first we digress slightly to suggest an alternative interpretation: If we 
require the penalty pressures to satisfy 

it is easy to show, via (54), and minimizing the integral with respect to the CB coefficient a 
(here n = 1 in (53)), that the result is again (53) and (55). This result appears to be related to 
the ‘near minimization’ of J, (V . uh)’ from the penalty version of the stokes functional, 

F(u“) = p ( V U ~ ) ~ :  [VU“ + (Vah))7 + A (V .u”)’; (57) d h 
the minimization of this functional gives the penalty velocity field and, for large A, approx- 
imately minimizes Jn(v.uh)” or, equivalently, J,(ph)’. 
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2. Discretized 

The discretized version of ph = -AV. uh is (4c) and the corresponding version of (52) is 

PZMP = A(UTCP, x Pzg), (58) 

where P is the vector of numerical pressures. The right-hand side of (58) vanishes if the 
pressure mode P, would exist using MI; hence, under these conditions, 

P’,MP=O, m = 1 , 2  ,..., n, (59) 

which is the discrete analogue of (53). In actual computations, however, round-off effects 
lead to PLMP= O(Ae) where e is the unit round-off level (e.g. for A = 10’ and e = 
Ae = (If the boundary conditions preclude pressure modes using MI, then the penalty 
pressures agree with those from MI to O(l/A).) 

Limiting (temporarily) subsequent discussion to the CB mode on rectangular elements for 
simplicity, we will show how (59), and the corresponding discretized form of (55) can be used 
to assess the built-in penalty treatment of this mode. Writing 

P = (P - aP,) + aP, = P, + aFc, (60) 

where Pp is the approximate (and unknown) vector of ‘physical’ pressures and P, is the CB 
vector, we obtain, analogous to (55) ,  

a = -P:MPJP:MPc. (61) 

(a) The 4-node element 
Using the fact that M,, = Ai6, and P, = fl/A. in (59) leads to 

CPi = c Pi; 
Red Black 

Equation (62a) is satisfied by the numerical penalty pressures and may be interpreted as the 
built-in CB filter a la penalty. Further clarification results from (61), which gives the 
amplitude of the CB pressure mode as 

a = f (1 P ,  - 1 PP,)/ 5 (UAA 
Red Black i = l  

where P,, is the (unknown) physical pressure on element i. We will return to this equation 
after discussing 

(b) The 9-node element 
For this element we have (for rectangles), Mii =A,Sij/4 and P, = (1, -1, 1, -l)T/Ai, and 

(59) yields 
M c (Pl - P2 + P; - P4) = 0, (62b) 

where Pl is the penalty pressure at the first Gauss point on element i (etc.) and there are M 
elements. This is the automatic penalty CB ‘filter’ for the 9-node element and is always 
satisfied by the numerical results. Similarly, from (60) and (61), 

i s 1  
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where Pp, is the (unknown) physical pressure at the kth Gauss point of element i. It is 
noteworthy that if (and only if) we apply the (elementwise) tq-filter to the pressures 
obtained from the penalty method, the results agree with those from MI (also after filtering 
of course) to -O(l/A); i.e. as mentioned previously, there is always some (small) local 
tq-component in the penalty pressures (which is not annihilated by the C matrix). 

While it may not be obvious that the CB component is ‘minimized’ from (62) and (63), 
further insight may be gained from (63) if we restrict ourselves to a unit square domain of M 
equal-sized square elements of area A = h2 (for which M = l /A) .  For this case we obtain 

a = A 2 ( D p x -  Red Black c c) 
for the 4-node element and 

for the 9-node element. We now consider-the effect of grid refinement; in particular, we wish 
to consider h + 0. In this limit, the differences in adjacent ‘physical’ pressures in each of 
these equations can be shown (via Taylor series) to approach zero like O(h2), since, using 
(64b) for example, 

where ‘0’ represents the point at the centre of the four nodes in question. Thus, inserting 
(65) into (64) gives, in general, 

a = A2h2 [- a2Pa I,+ 0 ( h 2 ) ]  = O(A2h2M) = O(h4). 
axay 

Hence, since the CB amplitude goes like h-2, the numerical penalty pressure, from (60), 
contains a CB component which decreases like O(h*) and it follows that each element (i.e. 
4-node or 9-node) inherently provides a useful filter which suppresses the CB component as 
the mesh is refined. 

For an impure CB mesh, this analysis may be combined with a perturbation analysis, as in 
Appendix 11, to lead to the same overall result. Finally, it is noteworthy that the penalty 
method, in essence, automatically applies the filters which we (painfully) developed for mixed 
interpolation! 

While not apparent from the above analysis, in practice it seems that the penalty filter is 
particularly effective for the 9-node element-so much so that some who have been using 
this penalty element ( H e i n r i ~ h , ~ ~  B e r ~ o v i e r ~ ~ )  were not even aware of the existence of a CB 
mode. On the other hand, Hughes et a1.,9 who use the 4-node element in the penalty 
approximation, are well aware of pressure oscillations and have been using one of our early 
filters” to smooth the pressures (and here, as with the 9-node element, the filtered penalty 
pressures generally agree with the filtered MI pressures to O(l/A)). 

Finally, we point out that the penalty results are also susceptible to ill-posedness (in some 
sense) in that, if (Pc, 9) # 0 for MI when a CB mode exists, the analogous penalty result will 
give useless velocities and pressures O(A); cf. (58). 
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VI. NUMERICAL EXAh4PLES 

In this section we present seven examples selected from the several hundred numerical 
experiments conducted during this study. These examples illustrate some of the items 
detailed in the previous sections. 

Example 1. Pure CB mode on a special mesh 

The mesh displayed in Figure 11 is an example of a special mesh configuration which can 
support a pure CB-mode when the 4-node element is employed. The mesh outlined entirely 
by solid lines displays a CB-mode when the problem is one in which normal and tangential 
velocities are specified at both inlet and outlet (with u = u = 0 on the top and bottom 
boundaries) while a specification of the tangential velocity, u, and normal traction, f“, at the 
outlet requires that two of the elements at the outflow be modified as shown by the dashed 
lines. The construction of the mesh is a direct, but tedious, application of the ideas presented 
in Section 111 B and while such meshes appear to be very special, they significantly increase 
the probability of encountering slightly impure modes. In this example a small pivot of 
O( lo-’’) was encountered during the course of the Gaussian elimination procedure which 
heralds the occurrence of the pure CB mode since the specification of fn at the outflow 
precludes the physical hydrostatic mode. While the numerical results displayed acceptable 
velocities for such a coarse mesh, the pressures exhibited a definite CB-mode of magnitude 
-zt6-4 superimposed on a physical pressure whose largest magnitude was -6-a result 
which is unacceptable without filtering. 

The results of filtering the numerical pressures by means of Schemes 1, 2 and 3 are 
displayed in Table I for f n = O  at the outlet. It is noteworthy that Schemes 1 and 2 yield 
similar results and exhibit the proper symmetry about the midplane while Scheme 3 is 
noticeably different and even unsymmetrical. The latter suggests that Scheme 3, the element 
area weighted scheme, is inferior and either Scheme 1 or 2 should be employed. However, 
we have found that Scheme 3 does yield acceptable resuits in most cases, especially when 
coupled with grid relaxation since it produces ‘sufficiently good’ pressures and is easy to 
implement (see Example 5). 

I 1 

0 2 4 6 8 
Figure 11. A special mesh which exhibits a pure CB mode 
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Table I. Filtered pressure from example 1 

Node Scheme 1 

5.3498393 
5.2834499 
S.3498393 
4.2187777 
4. I525227 
4.2 187777 
2.5376785 
2.3985714 
2.5376785 

Scheme 2 

5.34492 16 
5.2834499 
5.3449216 
4.2187777 
4.1525227 
4.2 187777 
2.5509268 
2.3985714 
2.5509268 

Scheme 3 
~~ 

5.285 3930 
5.2834499 
5.43420 14 
4.4181408 
4.1525227 
4.0926227 
2-5966438 
2.3985714 
2.5966438 

Bdy. pressure 

6.27696 
625065 
6-33917 
5,43836 
5.29512 
2.723 15 
0.73827 
0 .5  5279 
0.15101 

The filtered pressures at the nine nodes on the lower half of the boundary, numbered 
consecutively from the midnode of the left inlet, are also displayed in Table I. The linear 
extrapolation technique described in Section 111 F under Scheme 2 was combined with 
Scheme 2 to generate the filtered boundary pressures-which appear to be quite acceptable. 
It is also noteworthy, as previously mentioned, that this linear extrapolation technique can be 
used in conjunction with any of the filtering schemes. 

Example 2.  Consistent and inconsistent systems 

This example illustrates consistent and inconsistent systems generated via the GFEM or 
PGFEM technique and some of their significant features. The results of the numerical 
experiments displayed in Table TT are appropriate to the lid-driven cavity problem with the 
mesh of various sized rectangles illustrated below and in Figure 13 (the domain is square and 
3 units long in each direction; it is discretized using 36 linear or 9 quadratic elements), a 
system which possesses a pure CB mode for the 4-node element and the 9-node element 
with C-’ bilinear pressure. As discussed earlier (Section 111 D, generalized to Condition B of 
Section IV and extended to the PGFEM in Section VB), the algebraic problem associated 
with the discretized system can be inconsistent if the CB constraint equation is violated. 
Under the 4-node element in Table 11, Cases la,b and Cases 3a,b illustrate typical results 
obtained for consistent systems, and in particular, for systems similar to those detailed in 
Section 111 D. The velocity field in each case satisfies the discretized continuity equation, the 
GFEM and PGFEM solutions agree to O(l/A), and the pressure field, while exhibiting a 
pressure mode in the G E M  case, can be filtered to yield acceptable results. Also presented 
in Table I1 for Cases la,b is the pressure difference (Pc-PA) which is obtained by filtering 
the numerical pressures, illustrating reasonably close agreement between the GFEM and 
PGFEM results. In contrast, inconsistent systems (Cases 2a,b) display nonsatisfaction of the 
discretized continuity equation and concomitantly large pressures. 

The same phenomena occur for the 9-node element with discontinuous bilinear pressure 
and are illustrated under ‘9-node element’ in the table. 

Example 3. Impure pressure mode 

Portions of this example were summarized during our theoretical discussion of impure CB 
modes, but more details are worthwhile since those results, taken alone, appear to be rather 
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Table 11. Selected results from the lid-driven cavity problem 

Velocity (u. uIT 2 4 
Pressures 

A R C 1 3 

l . T o p R . C . ( u = l , l , l , .  .., l , l , l )  
-2.727 x 

a. G E M  2.727 X lo-' 

-2.727 x 10-3 
b. PGFEM (A = 10') 2.727 X 

-1.391 X lo-' -4.838X 
2 . 7 2 0 ~  -1,848X lo-' 

-1,391X lo-' -4.838X lo-' 
8.929X -1.848X lo-' 

6.341 -0.349 
3.458 8.804 

(Pc- PA) = 0.606 

0.6606 1,617 
0.3265 0,574 
(P, - PA) = 0.6 15 

2 .TopB.C. (u=0,1 ,11  ..., 1,1,0) 
-4.500 

a. GFEM -7.000 

-1.063 X lo-' 
-1.496 X b. PGFEM ( A  = 10') 

-1.967 1.140 
-0.495 -0.454 

-2.791 x lo-' -1.744X lo-' 
1.154X10-8 -4.173XlO-' 

O(10'5) 

0 0 0 7 )  

3. Top H.C. (u=O,O.5,1, .. .. 1,0.5,0) 
-1-474X -1.882X lo-' - 7 . 4 8 6 ~  -2.092 5.636 

a. GFEM 1.474X 3.331 X lo-'' -3-974X lo-' -0-781 -5.682 

-1.474X10-3 -1.8BZX lo-' -7.486X1W2 1.564 1.381 
b. PGFEM ( A  = lo8) 1.474 x 7.999X -3.974X lo-' 0.238 0-611 

11. 9-Node element Velocity (u, uIT 
Pressures 

A B C 

1. Top B.C. ( u  = 1,1, 1,. . . , 1) 
3,865 x -1.384X lo-' - 5 . 9 6 2 ~  O(1) 

a. GFEM 3.463X -1.4X10-'3 -2-122x 10-1 

om -3.865 X -1.384X lo-' -5.962 x lo-' 
b. FGFEM (A = 10') 3.463 X 1.568X -2.122X lo-' 

2. Top R.C. (u = 0,1, 1,. . . , 1,1,0) 
-9.180 X lo-' -1.658 X lo-' -7.025 X 

o(1 0i4) 

0007) 

a. G E M  -1.138 X lo-' -8.034 X 1.587 x lo-' 

-4.641 X lo-' -1.911 X lo-' -1.767X lo-' 
b. PGFEM (A = 10') -3.348X lo-' -4,734X -4'589X lo-' 
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Table 111. Summary of numerical results for an impure CB mode 

0 0.625 0.750 
lo-’ 0.625000001 0.750000002 

0.625001 0.750002 
0-625 0.752 

I .  (Top B.C.: u = 0 everywhere: no  flow case) 
E PRed P E k k  u’s and 0’s Smallest pivot 

~~ ~~ 

0 1.0(13*) 0.1449(13*) 0(10-’5) 3 x 10-’6 
10-~ 1 . o ~  0.6765(9) 0(10-’*) 1 x 10-l6 

1.0(9) 0.9998(9) o(l0-12) 7 x lo-” 
lo-’ 1.0(13) 0.9999(12) o(10-’.2) 7 x lo-’ 

11. (Top B.C.: u = 1 everywhere) 
V’s at 

E PS p33 uc centreline 

0 -2 1.035 0.5380 0.08046 0(10-14) 
lo-’ 1.921 X 106(6*) 0.5385 0.08078 0(10-4-10-6) 

3.216 X 105(4) 0.6293 0.13427 0(10-2-10-3) 
10-~ 3.356~ 102(1) 0.6290 0.13425 0(10-2-10-3) 

P ,  = Pz = 0: 13.536 0.3603 0.08033 0(10-5-10-4) 

E U A  U B  uI3 VD 

0 0.06157 0.06157 0.13448 -0.13448 
lo-’ 0.06201 0.06167 0.13442 -0.13442 
10-6 0.13542 0.07782 0.12503 -0.12503 
10-~ 0-13939 0.07779 0.12496 -0.12496 

p1 = pZ = 0: 10-~ 0.06586 0.06187 0.13432 -0.13432 
~ 

* Number of figures of ageement in pressure on red (or black) elements. 

pessimistic with regard to the thus far elusive convergence proofs for the 4-node element. 
The experiments were performed on a unit square grid composed of 64 equal-sized (before 
the perturbation) 4-node elements, as depicted in the sketch associated with Table 111. For 
both ‘undriven’ and ‘driven’ (Stokes flow, u = 1) cavities, we perturbed the mesh by moving 
node A (which defines E) as shown in the table. The pressure on element 1 was fixed at 1-0 
in all runs except that labelled P ,  = Pz = 0. A perusal of Table 111, which summarizes the 
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salient results, reveals the following: 

Undriven cavity 
(1) For the pure CB ( E  = 0), the pressures are 1.0 on all red elements (element 1 is red) 

and -0.145 on all black elements (the ratio of two unit round-off numbers from 
Gaussian elimination). The velocities are zero to machine accuracy. 

(2) For E > - the CB mode is absent and all pressures are essentially unity (velocities 
are still =O). 

(3)  As E goes from the smallest pivot increases by six orders of magnitude 
(it, like the perturbed eigenvalue, varies like E~ in this range). 

(4) E = lo-’ is in the ‘transition’ range (it is barely noticeable). 

Driven cavity (same pivot behaviour of course). 
(1) The pure CB case displays oscillatory pressures and the velocities display the approp- 

riate symmetry (e.g. v is zero along the vertical centerline, uB = uA, etc.). 
(2) For ‘recognizable’ perturbations (E > the pressure on the (unpegged) 

black elements varies like E-’ and the velocities at and near the perturbed node are 
perturbed to O(1) independent of E ,  which also causes a disproportionate loss of 
symmetry. 

A direct application of the internal constraint equation, (27), to this grid yields (using 
compass point notation with node A located (before the ‘tweak’) at the center of a 4-patch): 

(u,+ uw- uN - us) sin 6-(U,+ uw- uN- us) cos e = 0, (67) 

where O=tan-’Ay,/hx, is the angle associated with the perturbation of node A. This 
equation, which is indeed satisfied by our numerical results (at least for E = low6 and 
E = and while derived from element mass balances, is quite extraneous and spurious 
(and is, appropriately, not satisfied by the e = 0 solution). What was a redundant continuity 
equation for the pure CB mesh has become an extraneous internal constraint equation in the 
perturbed mesh. 

Hence, all of the dire predictions of the impure CB theory are verified by these 
experimental results. More optimistic results, however, will be presented in Example 7.  

The results shown in the last entry in Table 111 correspond to the idea 
discussed in Section I11 E wherein we peg two pressures, which sacrifices exact continuity on 
the two corresponding elements in favour of a regularization of the matrix. As shown in the 
table, the velocities are now indeed perturbed only to O(E); in addition, the impure CB is 
very small (we set P,  = P2 = 0 which is in a region of small VP, and thus even the raw element 
pressures look good; this will be further clarified in the next section) and the smoothed 
pressures display good, symmetric contours (see Figure 12(a)) which are indistinguishable 
from those obtained from the pure ( E  = 0) CB run (in contrast to the somewhat distorted, 
unsymmetrk isobars obtained from any of the three schemes when exact mass balances are 
enforced-see Figure 12(b)). 

experiment using the ‘node-freeing’ idea (which we 
introduce and discuss in the next section), we again observed a regular perturbation from the 
E = 0 results (we freed a tangential node on the bottom of the cavity and set f, = 0 there; the 
resulting CB-oscillation was quite small and the tangential velocity at the freed node was 

to 

When we repeated the E = 

O ( E f ) .  
Finally, we repeated these runs using the penalty method (A = lo8) for E = 0 and E = 

and obtained the following results: (i) the velocities agreed with those using mixed interpola- 
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Figure 12. Isobars for the driven Cavity, Example 3: (a) E = 0, (b) E = or Contour levels are  0, *l, * 5 ,  
*I0 

tion in the usual way (to O(l/A)) which implies that impure modes are also harmful to 
penalty results; (ii) for E = the raw pressures contained an impure CB pressure 
oscillation of 0(&160), showing that the built-in penalty filter is more effective on meshes 
which would exhibit a pure CB using mixed interpolation (the E = 0 penalty pressures looked 
very good). 
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These same ‘tweaked node’ experiments were also repeated with the 9-node element (C-’ 
bilinear pressure) on the same mesh (here, however, tweaking one corner node also required 
appropriate ‘tweaks’ t o  the nearest 8 affected neighbouring nodes) with somewhat similar 
results: (i) the impure mode ( E  = caused fairly large (but not as large as with the 4-node 
element) velocity perturbations for both mixed interpolation and penalty; (ii) the CB 
pressure oscillations were large, O(*lOO) for E = again for mixed and penalty (the 
E = 0 penalty pressures again were unpolluted and looked quite good). 

Example 4. Comparison of filtered pressures 

In this exampie we compare the filtered pressures from the 9-node element (2x2 Gauss 
point pressures) with those from the built-in penalty method filter for the same element and 
for  the (penalty) 4-node element. The test problem is (again) the ‘leaky’-lid-driven cavity 
(Stokes flow; u = 1 across the top) on  a 3 x 3 square grid (as in Example 2) of 9 biquadratic 
elements which are various-sized rectangles as shown in Figure 13; each 9-node element was 

.298 -.090 -.127 ,295 

.215 -.114 -.156 .211 

Figure 13. Pressures from a driven-cavity experiment 
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divided into four equal rectangles to generate the corresponding 36-element mesh of 4-node 
elements (the centroids of the 4-node elements are close to, but slightly displaced from, the 
Gauss points of the 9-node element). Since the mesh is symmetric, and the pressures satisfy 
Jn ph =0, only one-half of the pressures are displayed in Figure 13; the pressures at the 
Gauss points shown on the left-hand are the negative of those printed on the right-hand side. 
For the mixed interpolation case, the (pure) CB mode was first filtered, then the hydrostatic 
level was set to agree with that from the penalty case. The first entry at each ‘node’ is that 
from mixed interpolation with the xy -portion of the pressure field removed element-wise 
(the 9-node filter); the second entry is the 9-node penalty pressure, and the bottom entry is 
the 4-node penalty pressure. 

It is seen that all pressures look fairly reasonable in the high pressure region and, 
considering the coarseness of the mesh, are quite agreeable with each other. The differences 
show up in the low pressure region wherein a ‘lingering local impure CB’ is present in both 
penalty results. Finally, as mentioned earlier, if the 9-node penalty pressures are processed 
with the xy-filter, the resulting pressures agree with the filtered mixed interpolation pres- 
sures to -O(l/A) and are the physical pressures in the sense that they are the only ones 
‘seen’ in the momentum equations. Also, as the mesh is refined, we would expect the filtered 
pressures from MI to agree more and more closely with the penalty pressures for the 9-node 
element. 

Example 5. Performance of the CB filters on a highly distorted mesh 

Here we present more Stokes-driven cavity results, this time for a nonleaky cavity (4 = 0, 
0.5, 1.0, 1.0, . . . ,0.5,0 across the top) and on a highly distorted unit square grid comprising 

Figure 14. A mesh of distorted elements and isobars from Scheme 3 
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Figure 15. Isobars from Scheme 2 

. a .  . 
. . a  . 
. a .  

. ... 
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0- .-o---.--.-o . L a - - . - - . -  .- 
Figure 16. Isobars on a smoothed grid (Scheme 2) 
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Figure 17. Isobars on a smoothed grid (Scheme 3) 

110 4-node elements (Figure 14). This grid is probably quite far removed from a pure CB 
grid, although we can never really be sure (there were, however, no exceptionally small 
pivots). The raw pressures were noticeably oscillatory (one pressure was pegged at 1.0) and 
the velocity vectors looked reasonable. Figure 14 shows the original grid and the pressure 
contours obtained from Scheme 3 (the contour levels in all figures are 0, *l, *5,  *lo, *20). 
These contours, and those from Scheme 1 or Scheme 2 (the two are virtually 
indistinguishable-Figure 15), are rather jagged and unsymmetrical, although we should 
probably not expect much better from such a poor mesh and the more difficult boundary 
conditions. In Figures 16 (Scheme 2) and 17 (Scheme 3) we display the much improved 
results obtained by combining grid smoothing with pressure filtering and smoothing; the 
contours in Figure 17 are especially good. It appears that the simplest scheme (element area 
smoothing) applied to both the pressures and the nodes may be quite effective in the general 
case. 

Finally, when we repeated this calculation with two pressures pegged, the results were 
generally little different, especially in the regions of significant velocities. The smoothed 
pressure contous were virtually indistinguishable from those when exact mass balances were 
enforced, thus suggesting that the 'trick' of pegging two pressures (or one, depending on 
boundary conditions) is really only useful when the impure mode is very close to a pure 
mode (cf. Example 3); it may, however, never be too harmful and sometimes quite 
beneficial. 
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Example 6. Simple analytic test case 

An exact solution to the Stokes equations is u = x, u = -y, p =constant, and represents 
colliding (or turning) flow, since the stream function is $ = xy. We tested the 4-node element 
on this problem (on several grids) by applying the exact solution as a Dirichlet boundary 
condition. The results were encouraging in that the exact solution was obtained at the nodes 
for both pure and impure CB grids (equation (27) is identically satisfied by the exact 
solution). The 4-node elemeilt, on pure or impure grids, can converge-at least for some 
problems. 

Example 7 .  Experiments with mesh refinement 

In order to generate some experimental evidence relating to the potential convergence of 
the +node and 9-node (2 X 2 Gauss point pressures) elements, we performed several sets of 
experiments on a sequence of four meshes on the unit square. For the 4-node element, these 
were: 4 x 4 ,  8x8,  1 6 ~  16 and 32x32.  The 9-node element mesh used the same node 
locations (1/4 as many elements for each grid). In addition to these uniform girds, we also 
generated impure grids by perturbing either one or all of the internal nodes (the latter via a 
random number generator) for the 1 6 x 1 6  grid. These grids were employed on two 
problems, one rather easy (but with an analytic solution available) and the other more 
difficult (the driven cavity(!)). 

(a) A body force problem. This problem has been previously studied by Song et aL3’ and is 
useful in that the analytic solution is available which, while not an exceptionally difficult 
solution (it is very smooth), does permit some quantitative error analysis. If the appropriate 
‘body force’ terms are added to the right-hand sides of (la), then an exact solution to (la), 
(lb) which vanishes on the boundary of the unit square is 

u =2x2(1-x)2y)(l-y)(l-2y) 

u = -2x(l--x)(l- 2x)y2(1- y)” 

The (polynomial) body force term can be computed via f = V2n - Vp. 
Using the penalty formulation with A = lo6 and Dirichlet boundary conditions (u = 0 on 

an), we present the results of these experiments in Figure 18 in the form of L2 error norms, 
e.g., 

for both velocity and pressure. The curves in Figure 18(a) are those for a uniform mesh, but 
the results for a mesh with one tweaked node (E = h)  are basically indistinguishable (this 
also applies to the 9-node results in Figure 18(b)). Hence, for this problem, the velocities 
appear to be converging at the appropriate rates. Similarly, the pressure for the 4-node 
element is converging at the ostensibly appropriate rate (O(h)).  The only explanation we 
have (at this time) for the apparent superconvergence of the pressure for the 9-node element 
(where one might expect O(h2)  in general), is that the problem is too ‘easy’ owing to 
smoothness and symmetry. 
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There are several additional noteworthy points regarding these results (which have been 

(i) Both elements appear to be converging with increasing mesh refinement, for pure and 
impure meshes, in both velocity and pressure, at least in the penalty version. For 
mixed interpolation, the pressure will of course diverge in L, (at least for pure CB 
meshes) if it is not filtered; the filtered pressures will presumably converge, although 
we have not done the calculations. 

(ii) The CB component of the pressure is effectively suppressed via the penalty method, 
for both pure and impure CB meshes. (See also Figure 19, in which the CB 
amplitude-estimated via the Augen method36 and labelled ‘analytic problem’-goes 
to zero like O(h4) for the 4-node element, in apparent agreement with the theory 
(appropriately modified for the tweaked node) since a2P/dx d y  = 0; for the 9-node 
element, the CB amplitude was too small to even detect. All results in Figure 19 are 
from tweaked node (impure CB mesh) runs; for E =0, the CB amplitude was too 
difficult to detect, even for the 4-node element-it is probably absent.) 

independently verified by Malkus3’ for the 4-node element): 

h 

Figure 19. CB amplitude on slightly impure grid us mesh refinement for two problems, both using the 4-node 
element 
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(iii) These results are at variance with those of Oden et al., who computed3’ (and 

(b) The driven cavity. The same sequence of meshes was used for the leaky lid-driven 

(i) The CB amplitude on the uniform mesh was almost too small to measure (at least for 
16 X 16 and 3 2 ~  32). For the impure mesh with one tweaked node ( E  = h),  the 
CB pressures, while large for coarse meshes, see Figure 19, were suppressed like 
O(h’) as the mesh was refined; again, substantiating the theory put forth in Section 
V B. Even when all internal nodes were randomly tweaked with the same (average) E ,  

the CB amplitude was similar to that with one tweaked node. 
(ii) For one tweaked node, the velocity perturbations were O(1) at essentially all nodes on 

the 4 x 4 mesh, and at only a few nodes in the neighbourhood of the tweak for the 
8 x 8 mesh. For the 16 x 16 and 32 x 32 meshes, the velocity perturbations were very 
small (<<0(1)) even near the tweaked node. When all nodes were perturbed on the 
16 x 16 mesh, the velocity perturbations were still quite ~mall-O(lO-~). 

apparently predicted37) divergence in the pressure as the mesh is refined. 

cavity problem (penalty formulation; 4-node element) with the following results: 

We also ran the 16 x 16 mesh using mixed interpolation and observed the following: 
(i) With one node tweaked (two values of E ) ,  the CB amplitude again varied like 1 / ~ ,  but 

(ii) With all nodes tweaked, the velocity perturbations were again very small and the CB 

The net result from this series of experiments is that the deleterious effects of the spurious CB 
pressure mode and associated constraint equation appear to decrease nicely with mesh 
refinement. 

the velocities were only slightly perturbed-O( 

amplitude ( - *14) agreed with that from the corresponding penalty result. 

VII. DISCUSSION 

In this section we will elucidate several more of the points learned during this study and 
close by listing a number of things we did not learn. 

A. General comments 

1. The first (albeit not profound) item we address is the behaviour of the algebraic system 
when the consistency requirements (e.g. Condition B) imposed by pressure modes are not 
quite satisfied; a practical physical case occurs wherein the problem is described by specified 
inflow and outflow velocities in the presence of a hydrostatic mode (no f,, boundary 
conditions). If (25) is slightly violated, say via (g, P,) = E << 1 where P, is a pressure mode 
vector, then it can be shown that the solution to (4a), (4b) via Gaussian elimination will 
behave like 

(68) P = Po+ P(&/e)P,,, + O(E) ,  
u = uo+ O ( E ) ,  

where (Uo, Po) is the solution for E = 0, e is the unit round-off level, and p is a scalar of 
O(1). Hence, as E increases from zero, the pressure field rapidly becomes dominated by the 
null space eigenvector whose consistency condition is violated. If E c< 1, the solution (68) may 
be ‘acceptable,’ but a ‘large E ’  violation ( E  = 1) would give useless results. 

2. We have experimented with the idea of a pnori CB minimization, the goal of which is 
to obtain useful pressures without filtering. The two schemes we shall describe are sometimes 
useful in situations wherein something is known about the solution to the physical problem. 
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To explain the first scheme, ‘selective pressure specification,’ we first suppose that both 
pressure modes are present, in which case the numerically computed pressure P,, can be 
represented as 

PN = PP + YHPH + yPc, (691 

where P, is the desired (physical) pressure, PH is the hydrostatic mode, P, is the CB mode, 
and yH, yc are generally arbitrary. Since it is permissible to specify two pressures, consider 
the effect of specifying PNlR = PNR on the Rth red element and PNlB = P,, on the Bth 
black element (or the corresponding two nodes for the 9-node element). This procedure in 
effect specifies yH and yc since (69) generates a 2 x 2 system whose solution is 

where PH= 1, PcB = l/A,, PCR = -1IAR, and the value of yH is immaterial. Of course the 
physical pressures on the two selected elements, PpR and Pps are unknown; if they were 
known, however, it is clear that we could eliminate the CB mode (y,=O) by setting 
PNB = PpB and PNR = PPR. In the actual case, yc can be made ‘small’ as follows: 

(i) Select adjacent elements for pressure specification (on two adjacent nodes in the same 
element if the 9-node element is considered). 

(ii) Set PNB=PNR (value immaterial; use 0); this makes yc-(PpB-PpR)-VP, the 
‘actual’ pressure gradient at the ‘point’ in question. 

(iii) Select a region of the grid (for adjacent red/black pegging) where the pressure 
gradient is smallest (this is where qualitative knowledge of the solution would be 
useful). 

If there is no hydrostatic mode, yH = 0 in (69) and the analogous procedure is to peg 
PNlR =PNR on the Rth red element (say) which leads to 

yC = AR (PNR - PPR 1. (70b) 

In this case y, can be minimized by picking R to be an element o n  that part of where fn is 
specified; then, since Pp=fn in many cases,” PNR is specified to be the value of the normal 
traction force specified for the Rth  element (e.g. a common outflow boundary condition is 
fn = 0; in this case one simpty sets P, = 0 on one of the elements along this boundary). 

If the CB mode is slightly impure (such as might be obtained from an ostensibly 
rectangular mesh generated by a mesh generator code), then the same procedure may still be 
useful, but this time for an additional reason: it will regularize the matrix and lead to better 
velocity and pressure solutions, as discussed earlier. 

The second scheme is called ‘node-freeing’ and differs in that, rather than reducing the 
number of continuity equations, we increase (by 1) the number of momentum equations. In 
particular, the ‘trick’ is to release the tangential velocity at one node on the boundary; i.e. 
change the imposed boundary condition at one node from ‘ U, (tangential velocity) specified’ 
to ‘ft (tangential shear) specified.’ This serves the purpose of precluding the pure CB mode 
(matrix no longer singular) while still maintaining the desired value of U, at the given node 
(it is automatically enforced by the CB boundary constraint equati0n-e.g. (14)). Whether or 
not this trick suppresses pressure oscillations again depends on some knowledge about the 
solution; in particular, the value of ft at the node in question. In practice, the freed node 
should probably be selected in a region of minimum wall shear, and ft = 0 employed (a large 
discrepancy between the imposed value of ft and the ‘desired’ value will excite a CB pressure 
oscillation to the extent of the difference). This scheme too can be quite effective on a ‘nearly 
pure’ mode, again owing to matrix regularization. Donea et al.38 have used a related trick 
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(freeing all tangential velocities during part of a time step) for solving the time-dependent 
Navier-Stokes equations, using the ‘explicit’ method outlined by Gresho et aL” (In our 
current ‘explicit’ 2-D and 3-D codes, we (PMG and RLL) do  not resort to this trick, which 
must introduce some error: rather, we allow the CB to exist and filter it when pressures are 
desired.) 

Both of these schemes, which were demonstrated to be effective in Example 3, are also 
applicable to the penalty method of solution and may be especially useful on the trouble- 
some ‘nearly pure’ CB grids (the latter scheme is obviously easier to implement). 

3. A potentially effective practical procedure for ‘automatically’ dealing with pure and 
impure CB modes is outlined below. 

The situations encountered in practice may be classified as being of one of three types. 
These are (i) pure CB grids, (ii) small perturbations of CB grids and (iii) large perturbations 
of CB grids. Of the three, it is the second which creates the greatest practical difficulties. This 
is a consequence of the fact (discussed earlier) that an arbitrarily small perturbation of a pure 
CB grid can lead to O(1) perturbations in the velocity field. An a priori classification of a 
given grid is not possible in general and thus an acceptable implementation of the two CB 
elements’ must deal equally with all three cases. With this in mind, we tentatively propose 
the following strategy, which may well not he foolproof (nor always easy to implement). The 
element level matrices are loaded and the elimination (or factorization) method of solution 
applied in the usual manner except that we take advantage of the Fact that the presence of 
pressure modes, whether physical or spurious, can usually be deduced from the behaviour of 
the pivots. A drop in pivot size to round-off level reveals the presence of a pure mode whereas 
a drop in pivot size by ‘several‘ orders of magnitude is a ctrong indication of an impure 
pressure mode. ( I f  either situation is encountered, the consistency or otherwise of the system 
can be checked by comparing the pivot size with the corresponding component of the source 
vector.) In both cases the pivotal value is reset to a suitably large value (10” say) and the 
elimination process continued. Resetting the pivot in this way is tantamount to pegging the 
pressure to some arbitrarily small value on the appropriate element (or node). Finally, the 
computed pressure is smoothed in accordance with one of the procedures detailed earlier. 
The main advantage of this strategy is that the spurious grid-dependent internal constraint 
(usually present in small perturbations of CB grids) need not be satisfied. That is to say the 
problem has been regularized in these cases. 

4. We believe that many discussions (and implementations) of the penalty method would 
be improved, and much of the aura of mystique and even suspicion which we still see 
exemplified by many onlookers eliminated, if notions of reduced quadrature ‘tricks’ were 
replaced by the more straightforward ‘mixed interpolation via penalty’ approach, beginning 
with the discretized version of the continuum equation, p = -hv . II. While it is true that this 
approach does necessitate (in general) the explicit introduction of the (clearly defined) basis 
functions for pressure, it is at once more appealing and, we believe, more general” Reduced 
quadrature, when equivalent (e.g. 4-node element or 9-node element with straight sides) 
could then be advocated as a slightly more cost-effective procedure. 

5. The ‘tweaked node’ experiments presented in Examples 3 and 7 indicate the desirabil- 
ity of examining the spurious internal CB constraint, (27), more closely. We first return to 
(67) and consider its behaviour with mesh refinement. To this end we express the velocities 
at nodes N, S, E and W in terms of the central node (at its untweaked location) via Taylor 
series to obtain, as h -+ 0, from (67), 

,I,’ c:2 ___ :i2)(u sin 6 - u  cos 6 )  + O(h4) = 0. 
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While the factor multiplied by h2 is indeed spurious, it is the h2 factor itself which is most 
important; viz. (71) implies that the spurious constraint equation actually vanishes like O(h2) 
with mesh refinement. This indicates that the constraint equation, while perhaps deleterious 
on a coarse mesh, becomes more and more innocuous as the mesh is refined and, in the limit, 
vanishes identically for any velocity field; i.e. even the exact solution satisfies (71) for h -+ 0, 
which suggests that the potential barrier to convergence is automatically removed (the 
spurious constraint equation does not preclude convergence in velocity). A similar analysis is 
applicable to the spurious CB boundary constraint equation (13 or 14) and the results are 
also similar (the equation ‘vanishes’ as h -+ 0). 

This encouraging result can be generalized to an arbitrary mesh, and leads to a linear 
combination of the same types of expressions shown in (67), one for each node, with 
coefficients proportional to the departure of the given grid from the nearest (generally 
unknown) CB grid. The net effect, with grid refinement, is a linear combination of terms as 
in (71), each of which vanishes identically as h -+ 0. 

With this result, and our supporting numerical evidence, we offer the following hypotheses 
for both of the ‘CB-prone’ elements under consideration: 

(i) The velocities will converge as h -+ 0 for any mesh, for both mixed interpolation and 
penalty methods; 

(ii) On a pure CB grid, the pressures from mixed interpolation will always retain an 
arbitrary amount of CB, even for h-+0; hence the pressure can (and will) only 
converge after it is filtered (and smoothed if appropriate); 

(iii) On an impure CB mesh, the pressures from mixed interpolation will converge as 
h + 0 (and E independent of h )  with or without filtering; 

(iv) The pressures from the penalty method will also converge, for pure or impure CB 
meshes, with or without filtering. 

6. Returning to the boundary condition constraint equations for either the hydrostatic or 
the CB pressure modes (equation (25)), or both simultaneously, we make the following 
additional claims, which also re-emphasize the importance of (25): If an exact solution to the 
Navier-Stokes equations is used to specify Dirichlet boundary data via specified (exact) 
nodal values of n on do, the FEM approximation is ill-posed if these boundary conditions 
violate either of the pressure mode constraint equations and when the associated pressure 
mode exists for the given grid. Well-posedness (and convergence as h -+ 0) may be recovered 
in (at least) two ways: (i) employ the natural boundary condition appropriate to the pressure 
mode in question over at least a portion of d o  (even at just one node!); (ii) modify the 
Dirichlet boundary data in such a way (e.g. via a least squares adjustment) that the 
appropriate constraint equation(s) is satisfied. Of course, if the pressure mode is the CB 
mode and mixed interpolation is used, pressure convergence can only occur after the 
appropriate filter is employed. 

7. More recent arguments based on the order of the velocity derivatives vis-a-vis the order 
of the pressure derivatives (SegaPg) or on the number of discretized momentum equations 
vis-a-vis the number of continuity equations (Schneider et aL4’) are still inadequate to 
explain the need for mixed-interpolation. Even inviscid flows (Euler equations) will display 
pressure modes if equal-order interpolation is employed, and the constraint (equation) ratio 
is in fact nearly optimum25 using equal interpolation. 

B. Outstanding questions 
As is typical of research, this investigation has perhaps raised more questions than it has 

answered. Hence, in spite of the conjectures presented above, we conclude by posing some 
of our salient questions. 
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1. Convergence of the 4-node (and 9-node, C“ bilinear pressure) elements, both before 
and after CB mode filtering: 

(a) For the general mesh of distorted, isoparametric elements? 
(b) In the presence of a pure CB pressure mode? 
(c) On a mesh which is a small perturbation from a pure CB mesh? 
(d) Effects of mesh ‘regularization’ (is it necessary?) such as red/black pressure pegging 

or node freeing (or the penalty approach, which is a regular perturbation of mixed 
interpolation)? 

(e) Effect of grid-smoothing (4-node element) o n  the pressure convergence? 
2. For the 9-node element (C’ bilinear pressure), of ‘what use’ is the ‘xy’-portion of the 

(a) In the presence of a pure CB mode on a rectangular mesh (in which case the C 

(b) In the absence of a pure CB mode (e.g. when ft boundary conditions are used on a 

(c )  On a general mesh, with curved isoparametric elements? 

pressure approximation, both in ph and as a ‘test function’ for the momentum equations: 

matrix annihilates the effects of the xy-pressure variation elementwise)? 

rectangular mesh)? 

3. What is the relative ‘accuracy’ of the 9-node element using 3-node (C-’)  linear 
pressure, 4-node (C-’) bilinear pressure and 4-node (C‘) bilinear pressure, only the second 
of which can display a CB mode? (Bercovier and Pironneau4’ have analysed the Co element 
on rectangular grids.) 

4. Which of the two filters for the 9-node, C-’ bilinear pressure element (the element- 
wise xy-filter a la mixed interpolation or the automatic global filter a la penalty) is ‘better’ on 
a ‘coarse’ mesh? 

5. What is the true nature and consequences of the impure CB mode associated with an f, 
boundary condition? 

6. Finally, what is the ‘situation’ for three-dimensional flow simulation? 

VIII. CONCLUSIONS 

1. There is only one nonspurious pressure mode-the hydrostatic mode-and it will occur 
using any element, any mesh, and boundary conditions which specify the normal velocity 
o n  all of ai l .  Violation of the consistency condition associated with this null space 
eigenvector will OCCUT if erroneous (or inconsistent) boundary data are specified. 

2. The 4-node element and the 9-node element with C-’ bilinear pressure can each exhibit 
one spurious (pure) CB mode‘and an associated nonphysical constraint equation among 
the boundary velocities, violation of which will cause an ill-posed algebraic system. 
These CB modes can be successfully filtered by the procedures described herein. 

3. These elements can also exhibit impure CB modes which are more difficult to deal with. 
The potential danger of these impure modes is very high (especially when they are 
‘nearly’ pure and the mesh is ’coarse’), both numerically and theoretically. It is not 
generally possible, a pn’ori, to determine the proximity of an impure mode to a pure 
mode, nor even whether a pure mode will exist. 

4. The penalty analogue of these elements can also exhibit a related (impure) CB mode 
which is (partially) filtered automatically on coarse meshes; as the mesh is refined, the 
penalty filter becomes more effective and, in the limit, suppresses the CB mode 
altogether and in a manner which is analogous to the filters we developed for mixed 
interpolation (see also Malkus4’). 

5. The penalty method is equivalent to (in the sense of a regular perturbation) the 
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appropriate mixed interpolation analogue when implemented in the consistent manner 
described herein (and, more specifically, in Engelman et al.”). 

6 .  The 9-node velocity element with C” bilinear pressure exhibits no  spurious pressure 
modes. This is also true for the 9-node element using C- ’ h e a r  pressure approxima- 
tion; this element is deserving of more attention, since it is also quite accurate.’’ 

7. The 8-node (serendipity) velocity element with C” bilinear pressure exhibits n o  spurious 
pressure modes. The same element with C-’ bilinear pressure can exhibit three spurious 
pressure modes; if C-’ linear pressure is employed, this element can exhibit two 
spurious pressure modes. 

8. Equal-order interpolation elements (C” pressure) exhibit many spurious pressure modes 
which do not appear to be filterable. (Equal-order interpolation with C” velocity and 
C-’ pressure is not even possible owing to an excess of continuity equations.) 

9. Grid smoothing appears to be an effective procedure for improving the pressure 
accuracy for the 4-node element (and the corresponding 8-node trilinear element in 

10. The simplest 3-D element (8-node trilinear velocity, piecewise constant pressure) 
exhibits many spurious CB modes, all of which are filterable (at least when pure) by the 
same filter. 

11. Many of these results apply to certain finite difference approximations, which are thus 
necessarily encumbered with spurious pressure modes. 

12. Theoretical analyses of accuracy and convergence must consider the effects of the 
spurious boundary constraint equation and the spurious pressure modes (both pure and 
impure) when present. 

3-D). 
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